
~ )  Pergamon 
lnt. J. Heat Mass Transfer. Vol. 38, No. 14, pp. 2697-2700, 1995 

Copyright © 1995 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0017~310/95 $9.50+0.00 

0017-9310(95)00006-2 

TECHNICAL NOTES 

Pressure perturbations method for analysis of transient compressible 
gas flow around wells in porous media 

I S A A C  S H N A I D  a n d  S H M U E L  O L E K  
Research and Development Division, The Israel Electric Corporation Ltd, P.O. Box 10, Haifa 31000, Israel 

(Received 21 June 1994 and in final form 22 November 1994) 

1. INTRODUCTION 

In the last two decades, a new power generating technology 
emerged, involving Compressed Air Energy Storage 
(CAES). Air compressors using off-peak electric energy sup- 
plied by base load power plants charge CAES underground 
reservoirs. During peak load periods, air released from such 
reservoirs expands in turbines, generating electric power [1]. 
Candidate reservoirs are excavated hard rock, solution 
mined salt caverns, abandoned mines, depleted gas reservoirs 
and aquifers. The latter two reservoirs contain a sub- 
terranean water beating (aquiferous) porous rock, from 
which the water is displaced by compressed air. 

Transient compressible gas flow around wells in porous 
media arises, e.g. in conjunction with CAES and gas storage 
in aquifers and in other underground porous reservoirs [2]. 
While in seasonal gas storage the pressure varies relatively 
slowly, and the respective flow can be considered as quasi 
incompressible, in the case of  CAES and of  peak shaving gas 
storage, pressure changes are relatively big and of  relatively 
small duration. Thus, in the latter case one must fully account 
for the gas compressibility. Based on Darcy's law, transient 
compressible gas flow in porous media is described by a 
nonlinear diffusion type partial differential equation. 

A self-similar solution to such types of  problems for a 
single well located in an infinite reservoir is known [3]. For  
this solution, a zero well radius, constant well flow rate, and 
uniform initial pressure distribution are assumed. However, 
in many cases of  practical significance we can not neglect the 
well radius and assume a reservoir of  infinite extent. For such 
cases, similarity solutions do not exist, and we must apply 
either numerical or approximate analytical methods. 

One such example is a study performed to investigate the 
behavior and suitabiEty of  an aquifer-based compressed-air 
energy storage plant [2]. There, solutions for the air pressure 
distribution around a well were obtained by using a finite 
difference scheme. 

In the present work, an analytical method is developed 
that fully accounts for geometric and fluid flow factors, such 
as finite dimensions of  the reservoir and non-zero well radius, 
time dependent boundary conditions, and an arbitrary initial 
pressure distribution. 

2. PRESSURE PERTURBATIONS METHOD 

The general momentum equation for fluid flow in porous 
media is given by [4] 

12 ~ p D ~  # ~ 2 ~  pC . . . .  v p = - v + o g - ~ - ~ - ~ v , - ~ 7 ; , , .  (1) 

In order to assess the importance of  the various terms in (1) 
for our case, let us introduce the typical reservoir data:  

/~= 1.85x 10 -5 kg m s - ' ,  k =  1×10 -12 m 2, Ap = 20x 105 
Pa, p = 50 × 105 Pa, lc = 100 m, Sp = 0.06 and ta = 2 × 104 s. 
Based on these entities, an order of  magnitude analysis shows 
that the ratios of  the third, fourth and fifth terms on the 
RHS of (1) to the first term are 10 -9, 10 -15 and 10 -3, respec- 
tively. Thus, the third, fourth and fifth terms on the RHS of  
(1) may be neglected. Since the gas movement in the reservoir 
is mainly horizontal, the second term on the RHS of (1) may 
also be neglected. It leads to the well known classical Darcy's 
law equation [3]. 

Based on Darcy's law, the pressure distribution in transient 
isothermal ideal gas flow through porous media for constant 
thermophysical and geometric properties is described by the 
classical nonlinear diffusion equation [5]-[7] 

0p k 
V2p 2 (2) 

c~t 2/./Sp 

or equivalently 

psp d(lnp) 1 
k dt - V2p+ (Vp) 2 (3) 

with suitable boundary and initial conditions. 
Analytical solutions to equation (2) are limited to par- 

ticular cases. Generally, equation (2) is solved either numeri- 
cally, or by using approximate analytical methods, one of  
which is described in the sequel. 

Assume the gas pressure as a sum of  two components 

p(~, t) = pc(t) +PD(L t) (4) 

where ~ is a position vector. 
In equation (4), pc(t) is a volume averaged gas pressure in 

the reservoir given by 

1 
p~(t) = ~/Pf~,jv t) dV (5) 

where V is the gas volume in the reservoir and PD designates 
the pressure perturbation due to a finite permeability of  the 
porous reservoir. From Darcy's law and from equation (4) 
it turns out that 

VpD = Vp = - k v (6) 

where V is the superficial velocity. 
From formulae (5) and (4) follow two things: that the 

space averaged instantaneous pressure perturbation is equal 
to zero, and that Pc defines the mass of  the gas in the reservoir, 
namely 
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NOMENCLATURE 

a(t) = (k/#sp)p,(t) 
B(r) an initial condition 
C = 0.143sp- 1 5 
9 gravitational acceleration 
F (t) boundary condition 
H(r) an auxiliary function defined in equation 

(18) 
k permeability 
l~ characteristic length of a reservoir 
M gas mass in a reservoir 
k s gas mass flow rate 
P, P~, PD local pressure, average gas pressure and 

pressure perturbation, respectively 
Q(r, t) source function defined in equation (20) 
Q.(t) coefficients defined in equation (27) 
R dimensionless radial coordinate scaled with 

respect to r~ 
R.(r) eigenfunction 
Rg gas constant 
r position vector 
r radial coordinate 
sp porosity 
T temperature 

t time 
v superficial gas velocity. 

Greek symbols 
F°(t) coefficient of  expanding ~b(r, t) in a series of  

eigenfunctions 
e average dimensionless value of pressure 

perturbation defined in equation (10) 
2., A, dimensional and dimensionless eigenvalue, 

respectively 
# gas dynamic viscosity 
• (r, t) a potential function defined in equation (41) 
OR = (2/r 2) ¢9 reduced potential 
q~(r, t) function defined in equation (17) 
p gas density. 

Subscripts 
cn characteristic 
d duration 
e external 
w well. 

P D = ~  poff,  t) d V = 0  (7) 

for any gas, while for an ideal gas we have 

Pe (t)Sp V(t) 
M(t) - - -  (8) 

RsT 

where Rs is the gas constant and T is the gas temperature. 
Therefore, within the reservoir space domain, there always 

exists a surface on whichpD = 0. This surface divides between 
a region of  positive PD, and a region of  negative Po. 

Equation (3) may be recast in the following form : 

#SPk 0[In (po3t+po)] V2pD + ; (Vpo) 2. (9) 

From equation (9), an average dimensionless value of  
pressure perturbation is defined as 

[p~[ p~pl~ Ap 
~ = (10) 

P ktdp 2 

For the typical reservoir data, we obtain ~ ~ 0.04. Thus, the 
pressure perturbation is small IPol << P~, and equation (9) 
can be linearized to give 

@D _ _  kpe V2pD dp~ (11) 
dt ~ p  dt ' 

Now the determination of  compressible gas flow charac- 
teristics becomes simpler. The pressure perturbation PD is 
defined as a solution of  a linear partial differential equation 
(11) with proper boundary and initial conditions, since an 
average gas pressure Pc may be determined from an ordinary 
differential equation that stems from the equation (8) 

dpo dV = RgT (12) 
V d t  +P° ~ sp g 

where mg is the mass flow rate of  gas through the boundaries 
of  the reservoir and through the wells. From equation (6), 
the superficial velocity ~ can be determined. 

3. PRESSURE PERTURBATIONS FOR A FULLY 
PENETRATING WELL IN A CYLINDRICAL CLOSED 

RESERVOIR 

A model case of  a fully penetrating well with radius rw in 
a cylindrical closed reservoir having an outer radius ro is 
considered. We assume arbitrary initial pressure distribution 
po(r, 0) = B(r), a pressure gradient OpD/Or(rw, t) = F(t) at 
the well radius and @O/& (re, t) = 0 at the outer domain 
radius. 

This problem will be solved by eigenfunction expansions. 
To this end, the boundary conditions are first homogenized 
by introducing a new dependent variable, which leads to the 
following problem formulation 

3t r r +Q(r,t) inrw < r < rofort > O 

(13) 

dp(r, O) = B(r) --H(r)F(O) (14) 

~-r (rw, t) = 0 0 5 )  

~ r  (ro, t) = 0. (16) 

The following relations define the various variables which 
appear in equations (13)-(16) 

~b(r, t) = pD(r, t) -- H(r)F (t) (17) 

r 2 Fer 
H(r) - -  + - -  (18) 

2(rw-ro) re - rw 

k 
a(t) = ~ p e ( t )  (19) 

Q(r,t) ~ +a(t)F(t) 
ro/r- 2 dF 

= a t  - H ( r )  ~ .  (20) 
r e - -  r w 

The related eigenvalue problem is 



Technical Notes 2699 

$ (rJ = 0 

(21) 

(22) 

which results in the following eigenfunctions (but for a con- 
stant multiplier) 

R,(r) = I-1 G.,r,AM&r) --J, (&J Y&J) (24) 

where the eigenvalues are obtained as the positive roots of 

Y, (&r&r, (0.) -J, (Ar,) Yi (&rJ = 0. (25) 

Next expand the source term in a series of the eigenfunctions 

Q(r, r) = $, Qn(WW (26) 

where 

Q”(t) = 
I 

Q(r, t)R,(r)rdr 
!‘s 

“Ri(r)rdr, ?l= 1,2,... 
II ‘%, 

(27) 

Substituting &r, f) = Z,“= , R.(r)T.(t) and Q(r, f) = X,“= , 
Q,(t)R”(r) into equation (13) yields 

Utilizing equation (21) in equation (28) and rearranging 
gives 

+a(r)l.2rn - Q.(r) 
1 

= 0. (29) 

Since, in general, R, are not zero, we must have 

s t-a(r)rl:r, - Q.(r) = 0 (30) 

the solution of (30) is 

F,(t) = eeyJ’)[r.(O)+~ Q.(t)eYnit)dt] (31) 

where r,(t) = A:rba(t)dt. In order to determine I,(O), 
employ the initial condition (14) 

4(r,O) = B(r)-H(r)F(O) = f, R,(r)r,(O). (32) 

Upon operating on both sides of (32) with fis R,(r)rdr, and 
making use of the orthogonality properties of the eig- 
enfunctions R,(r) we obtain 

F,(O) = 
s 

’ [B(r) - H(r)F(O)]R,(r)rdr 
is 

’ R:(r)rdr. 
’ W ‘W 

(33) 

4. ANALYSIS OF SOLUTION 

The general solution (3 1) can be used to analyze the typical 
time behavior of the transient compressible gas flow in a 
porous reservoir. 

Introducing n and &-the average values of a(?) and 
Q,(t)-respectively, during the time interval [0, t], we obtain 

y.(t) = 1.2nt (34) 

s 
’ Q”(f) 

a ey.(‘) & = - (&?I - 1) (35) 
0 Afli 

so that 

r,(r) = e-i%,(O)+ $(l -em+). (36) 

Using the characteristic time r,, = Lace = ps&/kp&, 
where I, = r, - r, is a characteristic length, and A., = &I, is a 
dimensionless eigenvalue, it is possible to rewrite equation 
(36) in the form 

r,(t) = e-t’t~~,(0)+~(l-e-t~‘~~). (37) 
n 

For the typical reservoir data and r./rW > 500, values of 
the characteristic time are : t,, = 151 s, tcZ = 45 s, tes = 21 s, 
t, = 12 s, fcs = 8 s. These values decrease when n increases. 
For the present calculations, the data for A, from [8] are 
used. 

We realize that even for n = 1 the characteristic time is 
small. Comparing it with a typical value of the time interval 
for reservoir charge and discharge td = 2 x lo4 s, we may 
conclude that in engineering practice we usually have 
td/rc, > 100. In this case, we may neglect terms including 
e-“‘cn in expression (37) and we are left with 

r.(t) = $. (38) 

The solution (38) does not depend on initial conditions 
and corresponds to the case where the governing equation 
(11) for pressure perturbations does not include the term 
ap,/at. This case may be called the stabilizedgasjlow regime. 

5. THE STABILIZED GAS FLOW REGIME 

The previous analysis leads to the conclusion that for a 
general case of compressible gas flow in a porous reservoir, 
the initial transient period may be ignored for many practical 
engineering applications, and only the stabilized gas flow 
regime prevails. This is allowed when pressure perturbations 
are small and the process duration is much longer than the 
characteristic time. 

From equation (11) it turns out that pressure per- 
turbations for a stabilized gas flow regime are determined by 
a Poisson equation with appropriate boundary conditions 

v*m = 1 (39) 

where the potential @ satisfies the condition 

J ‘B(T, r) dV = 0. 
” 

(40) 

The potential @J in the equation (39) is defined as 

(41) 

Equation (39) determines a potential function of space 
coordinates and time. In this equation time is a parameter. 

For the present case of a fully penetrating well of radius 
r,,, in a closed reservoir with iX@r(r,,O) = 0, the solution 
may be represented by an expression 
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Fig. 1. Reduced potential ~R distribution around a well in a 
closed cylindrical reservoir with Re = 3378 vs dimensionless 

radius R. 

2 
(DR - - ~  i 2 2 1 n R +  = 2 = i R  --Re 

r w  

R~ (ln R~-- 1/2) + 1/2 -¼(R~ + 1) (42) 

1 - - R ~  2 

where ~R is a reduced potential, R = r/rw, and Re = re/rw. 
Figure 1 illustrates the spatial distribution of the reduced 

potential ~R for a case with Re = 3378. The curve on the 
graph corresponds to formula (42), and the points represent 
a numerical solution of the nonlinear diffusion equation (2) 
by [2]. We see that our approximate analytical solution is 
quite accurate. It is important to note that, in the analyzed 
case, pressure perturbations are not very small: IPDI/P ~ 0.2. 
It means that the pressure perturbations method has a wider 
range of applicability then it was a priori assumed, As (DR 
is proportional to the instantaneous value of the pressure 
perturbation PD, we realize that the region of the well influ- 
ence is relatively small, R < 300, and in the major part of the 
reservoir the pressure perturbation is negligibly small. Thus, 
to an acceptable accuracy, instantaneous gas pressure values 
may be considered as p(t) = pc(t) for R i> 300. 

6. C O N C L U S I O N S  

The mathematical description of transient compressible 
gas flow in porous reservoirs involves a nonlinear diffusion 
equation for the pressure distribution. In the present analysis, 

an approximate pressure perturbations method is developed. 
It leads to a linear diffusion equation for the pressure per- 
turbations and to an ordinary differential equation for the 
space averaged instantaneous pressure. 

As a model case, an analytical solution for the pressure 
perturbations is derived for a fully penetrating well located 
in a cylindrical closed reservoir. It is assumed that the well 
gas flow rate is an arbitrary function of time and likewise is 
the initial pressure distribution. Analysis of the solution 
shows that after a short initial period, the stabilized gas flow 
regime starts. In this regime, the flow characteristics do not 
depend on the initial conditions. 

In the stabilized gas flow regime, the governing equation 
is of the Poisson type for potential functions of space and 
time that include time as a parameter. A solution of this 
equation for a fully penetrating well is derived. 

Comparison with data obtained by a numerical solution 
of the nonlinear diffusion equation demonstrates that the 
pressure perturbations method ensures a satisfactory accu- 
racy of the analysis. 

A big variety of problems concerning transient com- 
pressible gas flow in porous media can be solved using the 
pressure perturbations method. Among these are a partially 
penetrating well, a multiple well case, etc. 
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